
,N-- _z- ut2.__.
I

Final Report to

National Aeronautics and Space Administration

on

Database Interfaces on 1NASA's I-Ieteroseneous

Distributed Database System

Shou-Hsuan Stephen Huang

Department of Computer Science
University of Houston

Houston, Texas 77204-3475

Grant NAG 5-739

July 1989

(NASA-CR-l_5420) DATABASF INTERFACES ON
NASA'S HETEROGENEOUS DISTRIRUTED OATA_ASE
SYSTEM cinal Report (Houston Univ.) ll p

CSCL 05B

N?0-14133

G3/_Z

\

[i] Summary

This is the final report on "Database Interfaces for

NASA's Heterogeneous Distributed Database Systems". This

document describes the syntax and semantics of all commands

used in the template. Template builder should consult this

document for proper commands in the template. Previous

documents (Semiannual reports) described other aspects of

this project. Appendix 1 contains all substituting commands

used in the system. Appendix 2 includes all repeating

commands. Appendix 3 is a collection of DEFINE templates

from eight different DBMS's.

[2] Sample Data

We shall use the following sample

examples in this document.

clusters for all the

CLUSTER test1

TABLE s

FIELD s# char (5)

FIELD sname char (20)

FIELD status int

FIELD city char (20)

TABLE p

FIELD p# char (5)

FIELD pname char (20)

FIELD color char (8)

FIELD weight int

FIELD city char (i0)

TABLE sp
FIELD s# char (5)

FIELD p# char (5)

FIELD gty int

CLUSTER test2

TABLE student

FIELD name char (20)

FIELD ss# char (9)

FIELD gpa real (1,2)

TABLE course

FIELD c# char (4)

FIELD section char (5)

FIELD time char (i0)

FIELD dep char (4)
TABLE enrollment

FIELD c# char (4)

FIELD reg int

FIELD section char (5)

[2] Definitions

-i-

Instance Number: Since many data (for example, fields of a

table) have multiple instance, an instance number is

assigned to each one of them so as to uniquely identify

these objects. Instance number always starts with integer

i. So, CLUSTER testl will have three tables TABLE-l, TABLE-

2 and TABLE-3, and 12 fields FIELD-1 (s#), ..., FIELD-12

(qty).

White Space: Newline (carriage return, end-of-line), blank,

or TAB. (These are all non-printable characters.)

Command Terminator: The way the commands are scanned

requires that there is a trailing whitespace (newline,

balnk, or tab). This whitespace character is consumed

during the scanning process and is not echoed to the filled

template.

[3] Substituting Command:

3.1 Purpose: to substitute a command name with information

from the primitive or system dictionary. This is the most

commonly used command and probably the easiest to
understand. We use this command to "fill in" information

from the database.

3.2 Syntax: Any substituting command should begin with an
"@" sign and followed by a string of letters. No blanks (or

any other white space character) are allowed anywhere in the
command. Formally,

@<name>[-<Ins.No.>]

where <name> is a string of UPPERCASE letters of size one or

more and the optional <Ins.No.> is a positive integer

number. Note that [xxx] is a notation for an optional

component of the syntax. The reason to introduce the

instance number is for the multiple occurences of certain

type of information such as fields of a table. A

substituting command with an explicit sequence number is

interpreted as is, i. e., no sequence numbers based on

repeating commands are used (see next section for repeating

command). If a substituting command without an explicit

sequence number is used outside all repeating commands, the

sequence number is assumed to be one.

3.3 Action: use the <name> and <Ins.No.> to find the right

information to be inserted at the place where the command

appears.

3.4 Example: When @RUID appears in the template (it is

really @RUID-I), it should be replaced by the Resident User
ID (obtained from STRUCT next_gsql).

3.5 Remark: A separate document contains a
legal names used so far.

list of all

[4] Repeating Command:

4.1 Purpose: to repeat a string of characters several times
according to the parameter name specified. In doing so, all
substituting command within this repeating command are
assigned an instance number if they do not have explicit
instance numbers associated with them. This is also a basic
structure for building templates.

2.2 Syntax: A repeating command has a BEGIN-part and an
END-part. They all begin by the "@" sign.

@BEGIN<name><delimiters>
(* Arbitrary string here, including another

nested BEGIN-END command *)
@END<name>

where <name> is a string
<delimiters> is defined as:

of (UPPERCASE) letters and

"<" <separator> ["><" <L-delimiter> "><" <R-delimiter>] ">"]

The default delimiters and separator are empty
Notice there are several possibilities:

o A repeating command with no delimeter at all;
o A repeating command with only separator;
o A repeating command with all three delimeters.

strings.

The delimiters and the separator can be any string of
characters except ">". There is a way to get around this
restriction (explained below). Note that blanks and other
"white space" are allowed now. They will be echoed just
like any other non-"<" character. In addition, to avoid
messing up the template a 2-character sequence "\n" is
introduced to denote a newline. As a result, the backslash
character "\" is a metacharacter and to have a "\" in the
string a "\\" must be used. In summary,

(i) \n is equivalent to carriage return (newline);
(ii) \\ is equivalent to \;

(iii) \c is equivalent to c for any c not equal to n;
(iv) \> can be used in the string. (So, this is how one

use > in the separator or delimitor string.)

_otice this new syntax is more flexible than the old one.
In effect, it allows a newline character to be used as a
delimitor or separator. In fact, one can achieve the same
effect in several ways. For example, to include a newline
as a separator, one can do either of the followings: (A %-
sign is used to indicate the newline which cannot be seem.)

(i)
@BEGINTABLE%

@TABLE%
@ENDTABLE%

(* % is non printable newline *)
<-- a blank before newline

(2)
@BEGINTABLE<%

>%

@TABLE%

@ENDTABLE%

(3)

@BEGINTABLE<\n>%

@TABLE%

@ENDTABLE%

In the first case, the newline separator is due to the

newline following the @TABLE and the blank. Since there is

a blank that serve as the terminator for @TABLE, newline is
echoed. Without such a blank, newline will not be echoed.

In the second example, the newline between < and > (on two

lines) are used as separator. Notice that the newline after

@TABLE serve as terminator for the command @TABLE and will
not be echoed.

In the last example, the newline is due to \n.

prefered way of using a newline as separator.

This is the

4.3 Action: Repeat the string between @BEGIN and @END

according to the name of the command. For substituting

commands (without explicit sequence number) inside the

BEGIN-END, append proper sequence number at the end of that

command. For indexing commands, convert them to proper
index. (See the secion on indexing commands.)

4.4 Example :

@BEGINFIELD<,><(><);>%
@FIELD %

@ENDFIELD%

<-- blank before newline

For table S in our example,
command is:

the expected result of this

);

s#,

sname,

status,

city

Notice that " ", _s a separator, not a terminator. Also,

when the number of columns is equal to zero, nothing shomld

be generated, not even "(" and ");". This feature will be

used in generating the length of attribute types.

examples:

@BEGINFIELD

xxxxx

@ENDFIELD

(* no delimiters *)

A word

Other

@BEGINFIELD<;\n>

XXXXX

@ENDFIELD

(* separator only *)

@BEGINFIELD<><(><)>

XXXXX

@ENDFIELD

(* no separator *)

of caution: we do take end-of-line seriously. If we

modify the first example above to:

@BEGINFIELD<,><(><);> @FIELD @ENDFIELD

the output looks like:

(s#, sname, status, city);

In other words, if an end-of-line appears in the middle of a

BEGIN-END loop and it is not consumed as the terminator of a

command, it will be repeated accordingly. Also, notice that

there are two blanks before @FIELD.

If a repeating command is asked to reapeat a string zero

times, it simply ignor the command. Thus, no delimiters or

separators will be generated in the output.

4.5 Remark: A separate document contains a list of legal

names used so far.

[5] Indexing Command:

5.1 Purpose: to

(nested) repeating
the other two.

provide a
command.

way to access the indexes of a
This is used less often than

5.2 Syntax: @<level> where

positive integer number.

<level> is a single digit

5.3 Action: Replace the index of the repeating command

based'on the parameter of the command. The parameter

<level> indicates the level of nesting of the repeating

command with the outermost level equal to one.

5.4 Example:

@BEGINCLUSTER

-5-

Appendix 2: Repeating Command Names

Name Meaning

CLUSTER

TABLE

FIELD

LENGTH

SCLUSTER

STABLE

SFIELD

SLENGTH

WHERE

No. of result cluster

No. of result tables in a cluster

No. of result fields in a table

No. of length indicators in a result field

No. of source cluster

No. of source tables in a cluster

No. of source fields in a table

No. of length indicators in a source field

No. of where clauses

Appendix 3: DEFINE Templates of Eight Different DBMS's

[1] Ingres

Template:
_IUU

@BEGINTABLE

create @TABLE (

@BEGINFIELD<,\n>

@FIELD - @TYPE @BEGINLENGTH @LENGTH @ENDLENGTH

@ENDFIELD)

@ENDTABLE

The Filled Template:

create employee(

emplname - c20,

emplid - i2)

create deptment(

emplid - 12,

deptid - c10)

[2] DB2

Template:

create database @DBNAME

@BEGINTABLE

create table @TABLE

(@BEGINFIELD<,kn>
@FIELD @TYPE @BEGINLENGTH<><(><)> @LENGTH @ENDLENGTH

@ENDFIELD)

in database @DBNAME-I

@ENDTABLE

The Filled Template:

create database mydbase

create table employee

(emplname char(20),

emplid int)

in database mydbase

create table deptment

(emplid int,

deptid char(10))

in.database mydbase

' i

[3] System R

Template:
_Imm

@BEGINTABLE

create table @TABLE
(
@BEGINFIELD<,\n>

@FIELD (@TYPE @BEGINLENGTH<><(><)> @LENGTH @ENDLENGTH)@ENDFIELD)
@ENDTABLE

The Filled Template:

create table employee(
emplname (char(20)),
emplid (integer))

create table deptment(
emplid (integer),
deptid (char(10)))

[4] Unify

Template:

@BEGINTABLE
@TABLE
@BEGINFIELD

@FIELD @TYPE @BEGINLENGTH
@ENDFIELD

@ENDTABLE

@LENGTH @ENDLENGTH

The Filled Template:

employee

emplname string 20
emplid numeric 10

deptment
emplid numeric I0

deptid string i0

/

[5] Knowledgeman

Template:
_Eml

@BEGINTABLE

define @TABLE

@BEGINFIELD

@FIELD @TYPE @BEGINLENGTH @LENGTH @ENDLENGTH
@ENDFIELD

@ENDTABLE

The Filled Template:

define employee

emplname str 20

emplid num

define deptment

emplid num

deptid str i0

[6] Sabrina

@BEGINTABLE

create @DBNAME-1 .@TABLE (

@BEGINFIELD<,\n>

@FIELD : @TYPE @ENDFIELD)
@ENDTABLE

The Filled Template:

create mydbase.employee(
emplname: text,

emplid: integer)

create mydbase.deptment(

emplid: integer,

deptid: text)

[7] Informix

Template:
gUll

@BEGINTABLE
database @DBNAME-I

file @TABLE

@BEGINFIELD
field @FIELD

@ENDFIELD
end

@ENDTABLE
guru

type @TYPE @BEGINLENGTH<>< length ><> @LENGTH @ENDLENGTH

The Filled Template:
Umli

database mydbase
file employee
field emplname .type character length 20

field emplid type integer
end

database mydbase

file deptment
field emplid type integer
field deptid type character length i0
end

[8] Focus

Template:

filename-@DBNAME , suffix - foc,$

@BEGINTABLE

segname-@TABLE , segtype- s1,$
@BEGINFIELD
fieldname-@FIELD , format-@TYPE @BEGINLENGTH @LENGTH @ENDLENGTH ,$

@ENDFIELD
@ENDTABLE

The Filled Template:

umuu

filename-mydbase, suffix - foc,$
segname-employee, segtype- s1,$
fieldnameuemplname, format-a20,$
fieldname-emplid, formatui2,$

segnameudeptment, segtype- sl,$
fieldname-emplid, format-i2,$
field_ameudeptld, format-al0,$
uluu

x

/.

